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ABSTRACT 

Seaweb is an underwater acoustic wide-area network connecting 

autonomous, distributed nodes.  Prior iterations of Seaweb relied on operator 

intervention to initialize and manually configure the network routes.  This thesis 

implements a network discovery process that enables a field of spontaneously 

deployed, ad hoc nodes to auto-configure for networking purposes.  Network 

routing is initialized as nodes in the network are discovered, with routes chosen 

according to comparative evaluation of a cost function for all candidate routes.  

The implemented network discovery process is tested using computer simulation 

and sea trial data.  The resultant network routes obtained upon completion of the 

ad hoc network discovery process are compared with those derived from 

Dijkstra’s algorithm.  It is concluded that the network discovery process always 

produces a shortest-path route from a master node to any other discovered 

nodes in the network.  Sensitivity studies on the route cost evaluation function 

are performed, and an alternative network discovery scheme is discussed. 
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I. INTRODUCTION 

Seaweb is an underwater acoustic wide-area network that interconnects 

fixed and mobile nodes [1].  Each node is equipped with a digital signal 

processor (DSP)-based telesonar (i.e., telecommunications sound navigation and 

ranging) modem for through-water acoustic communications [2].  The Seaweb 

network enables data-telemetry and command-and-control capabilities across a 

set of deployable autonomous undersea sensors and vehicles [3]. 

 
Figure 1.   An example of a Seaweb acoustic network comprising fixed and 

mobile nodes with satellite communications back to a command center via 
the radio/acoustic communication (racom) gateway buoy [From 4]. 

The ability of the submerged network to “reach back” to a command 

center that may be situated at a remote locality is provided by the racom buoy 

gateway node as depicted in Figure 1. 

A Seaweb server resides at the manned command center.  Its role is to 

configure, monitor and manage the underwater network including its routing 

strategies [5, 6].  The server also archives and publishes sensor data reported 
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from the network nodes, enabling near-real-time access by clients, including 

those interested in ascertaining underwater situational awareness. 

A. PROBLEM STATEMENT 

Prior iterations (prior to May 2008) of Seaweb networks have relied 

exclusively on operator intervention to initialize and manually reconfigure the 

network routes, with emphasis on routes from a master node (usually the 

gateway node) to all other nodes in the network.  Such a network initialization 

process necessitates two assumptions – that the total number of nodes in the 

network be known a priori to the operator, and that the operator has the 

necessary tools to decide on a network routing strategy that is consistent with the 

prevailing propagation conditions. 

The need for operator intervention to manually configure the network 

routes, either pre- or post-deployment, is contrary to the desire of having a field 

of spontaneously deployed, autonomous nodes that are capable of auto-

configuration for networking purposes. 

B. SCOPE OF THESIS 

This thesis seeks to address the aforementioned issues regarding 

initialization of an ad hoc Seaweb network by designing an underwater network 

discovery process, implementing the process in simulation, testing the process 

with experimental and synthetic data, and evaluating the resultant network routes 

that come as a natural by-product of the discovery process. 

C. STRUCTURE 

The coverage of this thesis demands an understanding of underwater 

acoustics and the ocean as a communications channel, and an appreciation of 

basic communications and network flow theory. 

Chapter II of this thesis covers the current state of the art in underwater ad 

hoc network discovery and related research in network routing protocols. 
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Chapter III provides an overview of the challenges posed by the physical 

ocean medium on acoustic communications in the context of Seaweb physical 

layer and the June 2008 Halifax trial environment, where the implemented 

network discovery process was first tested at sea. 

Chapter IV describes the Seaweb network architecture, specifically its link-

layer and network-layer implementation.  Existing features such as ping/echo, 

and broadcast ping utility packets that are instrumental in the implementation of 

the proposed discovery process are discussed. 

Chapter V develops considerations for the design of the ad hoc network 

discovery process.  Network topology discovery methods such as breadth-first 

search and depth-first search are examined.  The proposed network discovery 

process for initializing an ad hoc Seaweb network is then presented.  Parameters 

associated with the cost function used for network routing, executed in tandem 

with the discovery process, are also explained. 

Chapter VI reports the June 2008 Halifax sea trial and the analysis of 

experiment versus simulation results.  Sensitivity studies involving the cost 

function parameters are presented. 

Chapter VII proposes a slight variation to the implemented discovery 

process and discusses its pros and cons vis-à-vis the incumbent scheme. 

Chapter VIII presents the conclusions of this thesis and offers 

recommendations for future work. 
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II. BACKGROUND 

This chapter covers the current state of the art in underwater ad hoc 

network discovery and related research in underwater network routing strategies. 

A. RELATED WORK 

While discovery and routing protocols for terrestrial ad hoc and wireless 

sensor networks have been extensively studied [7, 8], their counterparts in 

underwater acoustic networks have received far less attention.  While it might be 

tempting to try to adopt terrestrial wireless solutions to the undersea 

environment, the unsuitability of terrestrial-derived proactive, reactive and 

geographical routing protocols in the underwater medium was discussed in [9]. 

There is, therefore, a need to design equivalent network-layer protocols 

tailored for underwater acoustic networks. 

Most research papers dwelling on underwater acoustic networks advocate 

some form of centralized planning of network topology and data paths in order to 

optimize scarce network resources, given that underwater networks are often 

smaller in scale and that network reliability over a prolonged period of 

deployment is a primary consideration [9]. 

In [10], a centrally-controlled underwater network discovery scheme was 

proposed in conjunction with a node localization algorithm.  Network discovery 

starts with a primary seed node 1S  in a known position.  Node 1S  broadcasts a 

discovery command packet that enables neighbors to establish distances from it, 

and waits for replies from nodes within earshot.  When replies are received, the 

information such as node ID and distances are kept in the memory of 1S .  The 

most distant node in the region of 1S  is then chosen as the second seed node 

2S .  The selection of the farthest node as the second seed node is to cover a 

larger area more quickly. 
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1S  then broadcasts the information set of its discovery (containing node ID 

and distance measures) together with a discovery command specifying the node 

ID of 2S , to its neighboring nodes.  As a result, all nodes in 1S ’s region have the 

discovery information set from 1S .  The node designated as the second seed 

node 2S  then proceeds with the same manner of discovery.  It then broadcasts 

the newly discovered information back to its neighbors.  At this point, nodes 

within the intersect region of 1S  and 2S  have both information sets.  In order to 

localize discovered nodes, a third seed node 3S  is chosen from nodes that lie in 

the intersection of regions 1S  and 2S .  The discovery cycle then repeats with 3S  

as the next seed node.  Upon completion, nodes that lie in the intersection of 

regions 1S , 2S  and 3S  will have three sets of range measure and can thus be 

localized.  Figure 2 depicts the intersections. 

1S

2S
3S

Three distance measures
Two distance measures

Distance

D
is

ta
nc

e

1S

2S
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Three distance measures
Two distance measures

Distance

D
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Figure 2.   Intersections of two and three known distance measures upon 

completion of discovery cycles by the first three seed nodes 1S , 2S  and 

3S  [After 10]. 

The above network discovery protocol offers insight into some of the 

issues that this thesis is trying to address.  The only drawback is that the 

discovery process is optimized for node localization.  Network routing is not a 

consideration. 
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In [11], another centrally-controlled network-layer discovery and routing 

protocol was proposed for underwater acoustic networks.  It relies on a master 

node to discover the topology of the nodes that comprise the network.  Topology 

discovery is done by the transmission of a probe by the master node to its 

nearest neighbors as shown in Figure 3.  A probe is a topology discovery 

message (TDM) broadcast.  The transmit level of the probe is set to a 

predetermined signal strength to limit the range of the probe.  Upon receipt of a 

TDM, each neighbor appends its node ID to it and relays it to the next “ring of 

nodes”, so that the probe propagates outward from the master.  In addition, each 

neighbor selects a communication channel from a set of channels not already 

allocated.  Therefore, the probe contains node IDs of nodes it traversed, as well 

as channel allocation for each of those nodes that relayed the TDM. 

Master Node

TDM

Node 
B

Node 
C

Node 
A

Node 
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Node 
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Node 
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Figure 3.   Topology discovery message (TDM) propagation in an underwater 

acoustic network.  Each node forwards the TDM upon receipt.  Circles 
represent the signal propagation radius about a given node [After 11]. 

When the probe reaches a leaf node, a topology completion notice is 

initiated.  The topology completion notice is returned to the master node along 

the reciprocal route the topology discovery probe propagated.  As the notice 
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transits each node in the route, the node appends the neighbor information it has 

collected from the discovery probes it received.  As a result, when the topology 

completion notice reaches the master node, it contains the information necessary 

for the master to establish paths between each pair of nodes and to manage 

traffic across the network. 

For this protocol to achieve the desired functionality, the communication 

links throughout the network were proposed to be full duplex.  The full-duplex 

requirement is not readily met by current acoustic communications technology. 

B. INSIGHTS 

A survey of articles related to network discovery and routing schemes 

pertaining to an ad hoc network of underwater sensors points to the advantage of 

having a central manager (a master node) to initiate and propagate the network 

discovery process.  The discovery process inevitably involves some form of 

broadcast message so that all nodes within earshot of this message will respond.  

The most significant result of an initial pair-wise discovery is the measure of 

round-trip sound propagation time, which is proportional to the node-to-node 

range.  This discovery process ripples through the network, and the master 

node’s knowledge of the network topology expands with each discovery cycle.  

Upon completion of the network discovery process, the master node has some 

knowledge of the network topology so that an optimized network routing can be 

determined. 

The insights gained herewith are useful for the design and implementation 

of the discovery process for initializing an ad hoc Seaweb acoustic network of 

autonomous nodes, to be discussed in Chapter V. 
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III. THROUGH-WATER ACOUSTIC COMMUNICATIONS 

This chapter provides an overview of the challenges posed by the physical 

ocean medium on acoustic communications.  The discussion pertains to the 

Seaweb physical layer and the June 2008 trial environment where automated 

network discovery was first tested at sea. 

A. SEAWEB PHYSICAL LAYER 

The Seaweb physical layer is based on M-ary Frequency Shift Keying 

(MFSK) modulation of acoustic energy in the 9-14 kHz band [3].  MFSK uses 

multiple (M) frequencies, offset from the carrier frequency, to represent M 

different symbols, each containing bn  bits so that 2 bnM =  [12].  A sample pulse 

train of a MFSK signal is shown in Figure 4. 

 

Figure 4.   An example of 4-ary frequency shift keying using M = 4 frequencies 
to represent M = 4 symbols.  Each frequency if  is offset by a different 

amount ifΔ  from the carrier frequency cf  [After 12]. 

Seaweb nodes are each equipped with a Teledyne Benthos underwater 

acoustic modem with a maximum source level (SL) of 186 dB re 1 μPa  at 1 m.  

Varying degrees of forward error correction are employed to mitigate the high bit-

error rate experienced in the acoustic channel. 
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B. HALIFAX TRIAL ENVIRONMENT 

The June 2008 Seaweb ad hoc network discovery experiment (a part of 

the Unet 2008 trial) was conducted in St Margaret’s Bay, Halifax, Nova Scotia, 

Canada. 

 

 

Figure 5.   Location of June 2008 Seaweb ad hoc network discovery 
experiment (St. Margaret’s Bay, Halifax, NS, Canada) and the bathymetry 

associated with the trial area. 

The water depths in which Seaweb nodes were deployed varied from 30-

70 m.  Bottom type was generally sand and gravel.  The surface wind speed 

ranged from 2 to 8 m/s during the trial.  Shipping traffic was observed to be light.  
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C. THE COMMUNICATIONS CHANNEL 

Acoustic communications bandwidth in the underwater environment is 

constrained by frequency-dependent transmission loss and non-white noise 

spectra.  Communication is further challenged by multipath time spread, Doppler 

spread and highly variable propagation delay, five orders of magnitude larger 

than in radio frequency terrestrial channels.  Together, these factors determine 

the temporal and spatial variability of the acoustic communications channel and 

make the bandwidth limited and dependent on both range and frequency [9]. 

1. Transmission Loss (TL) 

Transmission loss arises from attenuation and geometric spreading [13].  

Attenuation is primarily caused by absorption where acoustic signal energy is 

converted into heat [14, 15].  Absorption increases with distance and frequency.  

A plot of absorption coefficient as a function of frequency is given in Figure 6.  

For a Seaweb frequency range of 9-14 kHz, a value of 1 dB/km is a reasonable 

estimate for the attenuation coefficient. 

 
Figure 6.   Attenuation coefficient α  in dB/km versus transmission frequency 

in kHz based on Francois and Garrison [14, 15] for salinity S = 35 ppt, 
acidity pH = 8, and depth D = 50 m. 
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Transmission loss by geometric spreading refers to the spreading of 

acoustic energy due to wavefront expansion as sound travels away from the 

source.  For the most part, it is independent of frequency and increases with 

propagation distance.  Geometric spreading starts with spherical spreading close 

to the source, but channel boundaries may limit the propagation, absorbing some 

energy and reflecting or scattering the rest. 

2. Noise Level (NL) 

Noise in the ocean can be categorized into man-made noise and ambient 

noise.  Man-made noise is mainly caused by machinery noise and shipping 

activity, while ambient noise is related to seismic and biological phenomena and 

movement of water including tides, currents, storms, wind, and rain. 

 
Figure 7.   Noise spectrum level based on empirical formulae by Coates [After 

12]. 

Coates [16] provided empirical formulae to estimate noise spectrum level 

(NSL) as a function of frequency.  It can be observed from Figure 7 that different 

noise sources dominate different frequency bands, namely, turbulence (<10 Hz), 

shipping (10-200 Hz), wind (0.2-100 kHz) and thermal processes (>100 kHz). 
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For a Seaweb underwater acoustic network, wind noise is the main 

contributor to overall noise level.  An increase in surface wind speed has a large 

effect on the noise spectrum level as illustrated in Figure 8, which in turn, may 

cause a drastic decrease in communications connectivity.  Additionally, in-band 

noise levels experience episodic increases caused by passing boats and 

biological noise from shrimps, fish, and mammals. 

 
Figure 8.   Effect of surface wind speed on noise spectrum level based on 

empirical formulae by Coates [After 12]. 

3. Channel SNR 

The combined effects of transmission loss (TL) and noise level (NL) 

represent the gross channel impairment caused by environmental factors and is 

defined as the channel signal-to-noise ratio (SNR) [17].  It is both frequency and 

range dependent.  Figure 9 shows the effect of varying wind speeds on channel 

SNR.  It is a plot of ( )TL NL− +  for a water depth of 50 m, temperature of 14 oC , 

salinity of 35 ppt, and light shipping traffic. 
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(a) Wind speed = 0 m/s 

 

 

 
(b) Wind speed = 5 m/s 

 

 
(c) Wind speed = 10 m/s 

 

 

 
(d) Wind speed = 15 m/s 

Figure 9.   Effect of wind speed on ( )TL NL− +  in dB re 1μPa .  For a wind 
speed below 5 m/s, an acoustic communication range of up to 4 km is 

possible.  As wind speed increases, communication range drops 
drastically. 

4. Multipath 

Multipath propagation results in inter-symbol interference and thus may 

cause severe degradation of the received acoustic signal.  Multipath response 

depends on the link geometry.  Horizontal channels have a much larger multipath 

dB re 1 uPa dB re 1 uPa 

dB re 1 uPa dB re 1 uPa 
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spread than vertical channels.  The extent of the spreading is highly dependent 

on depth and transmitter-to-receiver range. 

The extent of multipath propagation within a given acoustic channel can 

be easily visualized with the help of ray traces and the channel impulse 

response.  Figure 10 shows two sound-speed profiles collected near the gateway 

node in June 2008 Halifax trial environment. 
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Figure 10.   Sound-speed profiles from St Margaret’s Bay (near the Seaweb 

network gateway node). 

The average sound-speed profile is used to compute the eigenray traces 

and channel impulse response using code from Torres [18] that employs a 

Bellhop Gaussian beam tracing acoustic propagation model.  Figure 11 depicts 

the eigenray traces and channel impulse response for the Halifax trial 

environment with a transmit frequency of 12 kHz, water depth of 57 m, source 

and receiver depths of 55 m, and varying source-to-receiver ranges of 1, 2, 3 and 

4 km.  The plots show a downward refracting channel that allows direct-path 

propagation.  Multipath arrivals are the result of surface and bottom reflections. 
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(a) Source-to-receiver range = 1 km 
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(b) Source-to-receiver range = 2 km 
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(c) Source-to-receiver range = 3 km 
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(d) Source-to-receiver range = 4 km 

 
Figure 11.   Bellhop eigenray traces for June 2008 Halifax trial depicting a 

downward refracting channel with multipath propagation.  Direct-path 
arrivals are in red. 
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The combined effects of transmission loss, noise, and multipath arrivals 

make communicating in the underwater acoustic channel a challenge.  In order to 

ensure a reliable acoustic link between communicating nodes, there is a need for 

a robust link-layer mechanism. 
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IV. SEAWEB ACOUSTIC NETWORK 

This chapter discusses the Seaweb link-layer and network-layer 

mechanisms that play roles in the ad hoc network discovery process. 

A. SYSTEM COMPONENTS 

In the Unet 2008 sea trial, the Seaweb underwater acoustic network was 

made up of three components, namely, a set of telesonar repeater nodes, a 

racom gateway node, and a Seaweb server. 

The telesonar repeater nodes were static nodes, each equipped with a 

commercial-off-the-shelf (COTS) Teledyne Benthos telesonar modem (ATM-885) 

loaded with proprietary US Navy Seaweb firmware.  As discussed in Chapter III, 

the telesonar modems use half-duplex MFSK signaling in the 9-14 kHz band with 

variable amounts of forward error correction. 

 

 
 

(a) Telesonar repeater node 
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(b) Racom gateway node 

 
Figure 12.   Schematics of a telesonar repeater node and the racom gateway 

node. 

Seaweb gateway nodes provide an interface between the underwater 

network and command centers submerged, afloat, aloft, ashore and afar.  The 

gateway node at Unet 2008 was a racom buoy.  The racom buoy is a member of 

the underwater network and is equipped with a variety of communication links 

(Freewave line-of-sight packet radio, Airlink cellular modem, and Iridium satcom) 

to “reach back” to a command center. 

A Seaweb server resides at the command center.  It provides a user 

interface for the Seaweb operator to configure, monitor and manage Seaweb 

operations.  It is also where incoming data packets from the submerged network 

can be fused as required by an application-layer protocol. 

B. LINK LAYER 

While the physical layer involves signaling schemes and error-correction 

coding, the Seaweb link layer is concerned with ensuring reliable node-to-node 

communications.  This is achieved through the employment of compact 72-bit 

utility packets. 
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1. Handshaking Process 

Establishment of a link between a pair of neighbor nodes is initiated by the 

request-to-send (RTS) and clear-to-send (CTS) utility packets as depicted in 

Figure 13.  This handshaking process enables addressing, ranging, channel 

estimation, power control, and adaptive modulation [19].  Other link-layer 

features such as acknowledgements, range-dependent timers, retries, and 

automatic repeat requests (ARQ) further improve link reliability.  Figure 13 further 

illustrates the selective ARQ (SRQ) link-layer mechanism for reliable transfer of 

large data files between neighboring nodes even when the physical layer suffers 

bit errors uncorrectable by forward error correction. 

Node A Node B
1.  Node A initiates a link-layer 
dialogue with Node B.

3.  Node A transmits a 1530-byte 
Data packet using 6 256-byte 
subpackets.

6.  Node A retransmits the 3 
subpackets specified by the SRQ 
mask.

8.  Node A retransmits the 1 
subpacket specified by the SRQ.

2.  Node B is prepared to receive as a result 
of Seaweb RTS/CTS handshaking.

4.  Node B receives 3 subpackets
successfully (green); 3 subpackets
contained uncorrectable bit errors (red).

5.  Node B issues an SRQ utility packet, 
including a 16-bit CRC mask specifying the 
3 subpackets to be retransmitted.

7.  Node B receives 2 of the 3 packets 
successfully.  Node B issues an SRQ for the 
remaining subpacket.

9.  Node B successfully receives and 
processes Data packet.
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6.  Node A retransmits the 3 
subpackets specified by the SRQ 
mask.

8.  Node A retransmits the 1 
subpacket specified by the SRQ.

2.  Node B is prepared to receive as a result 
of Seaweb RTS/CTS handshaking.

4.  Node B receives 3 subpackets
successfully (green); 3 subpackets
contained uncorrectable bit errors (red).

5.  Node B issues an SRQ utility packet, 
including a 16-bit CRC mask specifying the 
3 subpackets to be retransmitted.

7.  Node B receives 2 of the 3 packets 
successfully.  Node B issues an SRQ for the 
remaining subpacket.

9.  Node B successfully receives and 
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Figure 13.   Seaweb link-layer SRQ mechanism.  Blue arrows are Seaweb 

utility packets [After 20]. 
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2. Node-to-Node Ranging and Broadcast Ping 

Whenever a utility packet dialogue (such as RTS/CTS) takes place 

between a pair of nodes, the node-to-node range is incidentally calculated and 

incorporated into each node’s link-layer neighbor table.  The ping and echo utility 

packets are specifically designed to support neighbor discovery and node-to-

node ranging.  In order to achieve node-to-node ranging, the ping packet 

addresses the desired neighbor node [4]. 

When the address field of the ping utility packet is set to global address 0, 

its function becomes a broadcast ping and it elicits echoes from all neighboring 

nodes within earshot of this transmission.  Upon receiving a broadcast ping, a 

replying node waits a certain amount of dwell time randomly chosen from a 

uniform distribution, whose parameters are specified in the broadcast ping utility 

packet.  Randomizing the responses from neighboring nodes reduces the 

probability of echo collision at the eliciting node [21].  Figure 14 illustrates the 

process whereby a specific node is directed by the Seaweb server to issue a 

broadcast ping. 

(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry

 
Figure 14.   The broadcast ping process [After 21]. 

One-way travel time, and hence the node-to-node range (product of sound 

speed and one-way travel time), of any ping and echo pair of utility packets can 

be calculated without the need for any clock synchronization between the 

communicating nodes.  Figure 15 illustrates this process. 
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Figure 15.   Seaweb node-to-node ranging process: node i transmit a ping utility 

packet to node j.  Node j enters a random dwell time before replying with 
an echo utility packet.  The dwell time is embedded in the echo reply from 
node j to node i.  Upon receipt of the echo utility packet, node i computes 
the time elapsed between ping transmission and echo reply, and extracts 
the node j dwell time information.  All time measurements are computed at 

node i.  Thus, there is no need for clock synchronization [After 4]. 

The broadcast ping and node-to-node ranging features of the Seaweb 

link-layer protocols are exploited in the ad hoc network discovery process 

developed in the next chapter. 

C. NETWORK LAYER 

Network-layer protocols act across the network, serving to deliver 

communications from a source node to a destination node via some network 

route.  Network-layer supervisory algorithms can be carried out at either an 

autonomous master node or at the Seaweb server [1]. 

1. Neighbor Tables and Routing Tables 

Routing and navigation through Seaweb acoustic networks are made 

possible by embedded data structures distributed throughout the network.  Each 

node maintains a local link-layer neighbor table containing information about 

adjacent nodes that are within a single hop range.  In addition, each node stores 
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a local network-layer routing table indicating the neighbor nodes that have 

networked connectivity with the intended destination node [3].   

In contrast to dynamic source routing [22] where the route is specified and 

explicitly declared in the network-layer header of a data packet, the routing table 

approach employed in Seaweb permits the network-layer header to contain only 

the source and destination addresses while relying on the distributed routing 

table to forward the data packet to the appropriate neighbor node en route to the 

destination. 

At the Seaweb server, a global neighbor table and a global routing table 

are maintained to support network configurability. 

2. Cellular Addressing 

In keeping with the compact utility packet format of Seaweb, it was 

determined [23] that additional functionality was possible with the addition of just 

one more network-layer field in the utility packet, thus increasing the Seaweb 

utility packet size from 8 to 9 bytes.  The additional field is a "cellular address" 

which enables delivery according to the established routing table to the cellular 

address whereupon a final network-layer link from the cellular address to the 

destination node is performed.  Cellular addressing supports communications to 

a mobile address in the vicinity of a cellular node and may also be invoked for 

peer-to-peer communications or other network-layer addressing not already 

permitted by the routing tables [23]. 

3. Network Initialization 

Seaweb network initialization is a process of populating the distributed 

local neighbor tables and local routing tables of the deployed Seaweb nodes so 

as to enable network connectivity.  While neighbor tables can be populated 

through the use of the ping and echo utility packets, prior iterations of Seaweb 

networks have relied exclusively on the Seaweb operator to manually configure 

network routes from a master node (usually the gateway node) to all other nodes 
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in the network.  Such an initialization process is unsuitable for a spontaneously 

deployed, ad hoc network of autonomous sensors where the number, addresses 

and deployed locations of nodes may not be known a priori to the operator. 

The next chapter attempts to address this network initialization issue 

through the design of an ad hoc network discovery process that builds upon the 

existing link-layer and network-layer mechanisms of Seaweb. 
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V. AD HOC NETWORK DISCOVERY PROCESS 

Prior iterations of Seaweb networks have relied on the Seaweb operator to 

initialize and configure network routes from master node to all other nodes in the 

network.  This was accomplished through the manual specification of the local 

routing tables distributed throughout the network. 

This chapter proposes a network discovery process for initializing an ad 

hoc Seaweb acoustic network following spontaneous deployment of autonomous 

nodes, or where operator knowledge of the number of deployed nodes is limited 

or precluded.  Such a network is expected to be capable of discovering member 

nodes post-deployment, and be able to auto-configure for networking purposes. 

As briefly mentioned in Chapter II, this discovery process is centrally 

controlled by a node designated as the master node. 

Upon completion of network discovery, there should be valid routes from 

the master node to all discovered nodes in the network and vice versa.  Nodes 

needing to communicate with each other can use the master node as a hub. 

A. TOPOLOGY SEARCH METHODS 

Given a distribution of fixed nodes, there are essentially two basic search 

techniques for discovering directed paths (routes) from one specific root node 

(master node) to each node in the network – breadth-first search, and depth-first 

search [24]. 

1. Breadth-First Search 

In breadth-first search, the algorithm starts at the master node and finds 

all the neighboring nodes.  Then for each of those nearest nodes, it finds all their 

unexplored neighbor nodes, and so on, until there are no more unexplored nodes 

in the network. 
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2. Depth-First Search 

In depth-first search, the algorithm starts at the master node and explores 

along a path as far as possible before backtracking one level up to search along 

the next path.  Figure 16 illustrates the difference between the two search 

techniques. 
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Figure 16.   Two search techniques for a deterministic network – Breadth-first 

search  vs Depth-first search [After 24]. 

3. Comparison 

In breadth-first search, the path (route) from the master node to any node 

in the network is always a shortest path [24] in that it contains the fewest number 

of arcs (links) among all possible paths joining the two nodes.  The same cannot 

be guaranteed when using the depth-first search technique, e.g., in Figure 16 the 

breadth-first search route from node A to node F contains three hops (A-B-E-F) 

whereas the depth-first search route contains four (A-B-C-D-F). 

The runtime complexity of both search techniques is on the order of the 

sum of the number of nodes and the number of arcs in the entire network [24]. 

Given that the theoretical runtime complexities of the two search 

algorithms are the same, the breadth-first search technique will be adopted for 

the network discovery process since it is guaranteed to produce a route with the 

fewest number of hops from the master node to any other specified node.  
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B. CENTRAL CONTROL 

Chapter II alluded to the use of a master node to initiate and control the 

network discovery process.  Such a centrally controlled scheme allows the 

master node to actively monitor the progress of the discovery process as it 

proceeds.  The master node is also able to proactively terminate the process if 

certain pre-determined conditions are met.  Another advantage of central control 

is that only the master node’s processing ability needs to be enhanced to handle 

the envisaged complexity of the ad hoc network discovery process, as opposed 

to upgrading all Seaweb nodes.  The latter advantage has been important during 

the development and sea testing of this process, as software changes need only 

be applied at the master node.  Existing Seaweb functionalities covered in 

Chapter IV, such as broadcast ping and its echo response, distributed neighbor 

tables and routing tables, are also exploited. 

C. DESCRIPTION OF THE NETWORK DISCOVERY PROCESS 

Since the master node centrally controls the network discovery process, 

all other nodes (branch nodes) in the network await instruction from the master 

before performing peer discovery or local routing table updates.  Peer discovery 

involves each node in the network issuing broadcast pings to elicit echoes from 

its neighboring nodes.  The branch node reports results back to the master node 

upon completion of each activity.  The master node aggregates the received peer 

discovery data in a global neighbor table and ultimately decides how routing to 

each branch node should be configured.  The routing tables are then distributed 

out to the branch nodes. 

At the end of the discovery process, there should be valid routes from the 

master node to all discovered nodes in the network and vice versa.  These routes 

may not be optimal for networked connectivity between any two given branch 

nodes, but they can always communicate with each other by using the master 

node as a hub [25]. 



 30

Figure 17 represents a hypothetical node deployment for illustrating the ad 

hoc network discovery process. 

 

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

 

Figure 17.   Hypothetical node deployment for illustrating the ad hoc network 
discovery process.  Node A is the master node. 

1. Master Node Discovery 

When an arbitrarily designated master node receives a network discovery 

command from the Seaweb server, it issues a specified number of broadcast 

pings at a specified power level to discover its neighbors.  The broadcast ping is 

repeated a user-specified number of times to mitigate the possibility of echo 

collisions, where the echoes from two or more neighbor nodes arrive at the 

master node at the same time.  The results (neighboring node addresses and 

ranges) from these broadcast pings are aggregated in a global neighbor table 

that the master node uses to determine routing for the network.  The global 

neighbor table resides only at the master node.  The functionality of local 

neighbor table at each node, as described in Chapter IV, remains unchanged. 

At the end of its immediate neighbor discovery, the master node’s global 

neighbor table is filled with range and address data for all the branch nodes it 

discovered.  Figure 18 depicts the nodes discovered by master node A. 
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Figure 18.   Master node A discovery.  Node A conducts broadcast ping and 
discovers new nodes B, C, and D.  Node A stores neighbor information in 

the master neighbor table. 

2. Branch Node Discovery 

Upon completion of master node discovery of its neighbors, the master 

node determines who are its immediate peers by applying a range cutoff, which 

is specified as an argument in the initial network discovery command.  The 

master node then sequentially assigns bi-directional routes to these branch 

nodes, and commands each of them to perform peer discovery.  The master 

node always operates on the nearest unprocessed branch node, establishing a 

route and then performing peer discovery. 

Each branch node performing peer discovery of its neighbors also uses 

the same user-specified power level and performs the same specified number of 

broadcast pings.  All discovery pings at branch nodes are explicitly commanded 

from the master node. 

As each branch node discovers its neighbors, the results are sent back to 

the master node.  As previously mentioned, the master node aggregates and 

stores the range and address information in a global neighbor table. 
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Figures 19-27 illustrate the rest of network discovery process as it 

cascades through the hypothetical network, alternating between routing and peer 

discovery, and following a breadth-first search scheme. 
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Figure 19.   Master node establishes route (red arrow) to its nearest neighbor 
node B and directs it to perform peer discovery. 
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Figure 20.   Master node establishes new route to next nearest node C and 
directs it to perform peer discovery. 
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Figure 21.   Master node establishes new route to node D and directs it to 
perform peer discovery. 
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Figure 22.   Master node establishes new route to next nearest node J and 
directs it to perform peer discovery.  Route to J goes through node B. 
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Figure 23.   Master node establishes new route to next nearest node K and 
directs it to perform peer discovery.  Route to node K goes through node 

C instead of node B, based on the route cost evaluation function. 

 
 

A

B

C

D

M

J

K

P
Q

A sets-up route to M via B

A directs M to ping

M discovers nodes B, J

M sends info back to A to be 
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to M via B

A directs M to ping

M discovers nodes B, J

M sends info back to A to be 
stored in Master Neighbor Table  

Figure 24.   Master node establishes new route to node M via node B, and 
directs it to perform peer discovery. 
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Figure 25.   Master node establishes new route to node P via node C, and 
directs it to perform peer discovery. 
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Figure 26.   Master node establishes new route to node Q via nodes C and P, 
and directs it to perform peer discovery.  No more new nodes are 

discovered and the network discovery process terminates. 
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Figure 27.   Resultant bi-directional routes from master node to all discovered 

nodes in the network upon completion of the ad hoc network discovery 
process. 

3. Master Node to Branch Node Routing 

Routing from the master node to a branch node is done in tandem with the 

network discovery process.  When broadcast ping results return to the master 

node from a branch node, the master examines the results to determine if the 

branch node can see any other nodes that the master is not yet aware of, i.e., 

newly discovered nodes.  This essentially expands the network that the master 

node has knowledge of.  In addition, the master node needs to examine the 

global neighbor table and establish routes to branch nodes, using a route cost 

evaluation function, as they are discovered.  When selecting a branch node to be 

routed to, the master node always chooses the next nearest branch node it has 

knowledge of.  Route establishment and assignment to a branch node is done 

before the master node commands it to perform peer discovery.  Figures 19-27 in 

the preceding pages depict the route establishment process being executed in 

tandem with the network discovery process1. 

                                            
1 The route establishment process is very similar to Ad hoc On-Demand Distance Vector 

(AODV) routing protocol except that AODV does not report the route back to the originator 
(master node) until the shortest path reaches the destination [29]. 
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4. Route Selection 

When presented with multiple routing options to a specific branch node, 

the master node uses the route cost evaluation function to choose the lowest 

cost route.  For example, in Figure 23, when attempting to establish a route to 

node K, the master is presented with two routing options – A-B-K and A-C-K.  

The final route selection (A-C-K) is the route with the lowest cost given by the 

route cost evaluation function. 

5. Route Evaluation 

In determining the lowest cost route to a branch node in the network, a 

variety of route cost criteria and associated cost functions can be used – hop 

count, path length, message delivery latency, transmission security, power 

consumption, network longevity, and message delivery reliability [26].  This 

implementation of the ad hoc Seaweb network discovery process employs a cost 

function empirically derived with two principal factors taken into consideration – 

preferred hop range, and the number of hops taken to reach the specific branch 

node. 

a. Route Cost Evaluation Function 

The empirically derived route (path) cost function is given by 

=
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The first term in the above cost function corresponds to the penalty 

associated with the variance from a user-specified preferred hop range 

(described in more detail below), and the second term is the penalty associated 

with the distance of the hop. 

For an N-node network, the corresponding total network cost is the 

sum of all the N-1 path costs in the network, normalized by a factor that is a 

function of the preferred hop range and the range cutoff, and is defined as 

−

=

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

−

∑
21

1

where  is the total network cost,
 is the lowest path cost from master node to node ,

1 is the number of paths in the -node network,
 is the preferred 

N
p

NETWORK i
i c

NETWORK

i

p

r
C C

r

C
C i
N N
r hop range, and

 is the range cutoff.cr

 

b. Preferred Hop Range 

The preferred hop range (rp) is a user-specified range value that 

roughly corresponds to the desired length of node-to-node links for the network.  

A small preferred hop range, relative to the range cutoff, causes the routing 

algorithm to choose a route containing more short-distance hops, which is a 

desired routing strategy if transmission security or power consumption were used 

as a route cost criterion [26].  On the other hand, a larger preferred hop range 

causes the routing algorithm to choose a route containing more direct, long-

distance hops which reflects a routing strategy with hop count, path length, or 

latency as a cost criterion.  When reliability is the primary criterion, the preferred 

hop range should represent the most desirable node-to-node range given the 

prevailing propagation conditions, expected noise levels, and performance 

expectations for the network. 
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c. Range Cutoff 

Range cutoff (rc) is a user-specified range beyond which any node 

discovered will not be considered as an immediate neighbor.  Such a node must 

be reached via hops from a nearer neighbor.  Range cutoff corresponds to the 

largest acoustic communications range supported by the propagation conditions 

of the channel.  Obviously, the lower bound on range cutoff must be the shortest 

node-to-node spacing in the network; otherwise, no nodes will be discovered by 

the master node.  A good estimate of the range cutoff can be obtained from the 

channel SNR plots illustrated in Figure 9 of Chapter III.  For a wind speed of less 

than 5 m/s, a range cutoff of 4 km is chosen. 

d. Handicapped Nodes 

Certain nodes that are at an acoustic disadvantage, e.g., on the 

other side of a thermocline or at a different depth than most other nodes, can be 

flagged as handicapped nodes.  When designated as a handicapped node, the 

preferred hop range associated with immediate links to and from that node is 

halved.  The net result is that the route cost evaluation function favors a shorter 

hop to and from the handicapped node.  In most Seaweb deployments, the 

master node is the racom gateway buoy with its transducer at a shallower depth 

than the rest of the nodes in the network.  Thus, the master node is usually 

identified as a handicapped node. 

6. Runtime Complexity 

During the network discovery process, each node is directed to perform 

peer discovery once.  In addition, as each peer discovery result is returned to the 

master node, the master processes the existing aggregated information in the 

master neighbor table in order to determine routing to the next node.  In an N-

node network, peer discovery is performed exactly N times.  In a fully connected 

scenario where all the N nodes are interconnected such that each node has N-1 

neighbors, the master node needs to process N-1 sets of neighbor information 

each time in order determine routing to the next node.  Therefore, the theoretical 
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runtime complexity of the network discovery process for an N-node network is on 

the order of ( ( 1))O N N −  or approximately 2( )O N . 

7. Frequency of Network Discovery 

Variability in underwater acoustic propagation and noise requires 

consideration of channel availability when specifying the preferred hop range.  

For example, if 90% channel availability is desired, the preferred hop range 

should correspond to a range meeting or exceeding 90% statistical availability of 

an adequate receiver signal-to-noise ratio (SNR) for the time-varying channel.  

To mitigate longer-term degradation of the channel, the network discovery 

process needs to be repeated at a regular interval so as to update existing 

network routes in a manner that adapts to the prevailing channel conditions in the 

evolving medium.  Adaptation may be achieved by adjusting the preferred hop 

range in a feed-back manner according to recent performance statistics.  

Network discovery may also be event-triggered, such as when member nodes 

suffer outages by battery depletion or when new nodes are introduced to the 

network.  The discovery update should fully utilize existing neighbor data along 

with accumulated performance statistics for each link.  The frequency of periodic 

network discovery update is largely dependent on the long-term rate of change in 

the acoustic channel (as indicated by variations in the sound-speed profiles and 

in the ambient noise levels) where the nodes are deployed.  Although this thesis 

does not specifically address the frequency with which network discovery needs 

to be repeated, it is practical to conduct a network discovery update on the order 

of once per day. 

D. SIMULATION 

The ad hoc network discovery process is implemented in C language for 

simulation purposes.  Graphing and plotting of simulation results are done in 

MATLAB.  A program flowchart is given in Figure 28 and the program source 

code is appended in Appendix A. 
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Figure 28.   Program flowchart for the network discovery process implemented 

in C language. 

 
Figures 29, 30 and 31, respectively, show simulation results for a network 

of 50 nodes randomly distributed in a 15 km by 15 km area to illustrate the 

effects of handicapped node, range cutoff, and preferred hop range on the 

resultant network routes.  Node 20 is the master node from which network 

discovery is initiated.  Simulation parameters held constant are: single broadcast 

ping at each node, and a ping power level corresponding to a reliable 

communications range of 4 km. 
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(a) Without handicap at master node 20 
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(b) With handicap at master node 20 

 
Figure 29.   Simulation results illustrating the effect of a handicapped master 

node on the resultant network routes.  Range cutoff rc = 4 km, preferred 
hop range rp = 1 km, without handicap (top) and with handicap (bottom) at 

master node.  Shorter hops are favored at the handicapped node. 
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(a) Range cutoff rc = 4 km 
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(b) Range cutoff rc = 3 km 

 
Figure 30.   Simulation results illustrating the effect of range cutoff on the 

resultant network routes.  Range cutoff rc = 4 km (top) and rc = 3 km 
(bottom), preferred hop range rp = 1 km, without handicap at master node.  

One node is not discovered when the range cutoff is 3 km. 
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(a) Preferred hop range rp = 1 km 
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(b) Preferred hop range rp = 3 km 

 
Figure 31.   Simulation results illustrating the effect of preferred hop range on 

the resultant network routes.  Range cutoff rc = 4 km, preferred hop range 
rp = 1 km (top) and rp = 3 km (bottom), without handicap at master node.  

A larger rp results in routes with more direct, long-distance hops. 
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VI. SEA TRIAL RESULTS AND FOLLOW-ON ANALYSIS 

In parallel with the design and simulation of the ad hoc network discovery 

process at the Naval Postgraduate School, Teledyne Benthos was contracted to 

implement the same network discovery scheme as a firmware upgrade for 

existing Seaweb modems. 

A Seaweb ad hoc network discovery experiment was conducted in June 

2008 in St Margaret’s Bay, Halifax, Nova Scotia, Canada.  The experiment was 

conducted as part of the Unet 2008 sea trial.  Refer to Chapter II for a description 

of the location and trial environment. 

A. TRIAL SETUP 

A total of 19 nodes were utilized for the purpose of the network discovery 

experiment.  Table 1 lists the GPS coordinates of the deployed nodes and Figure 

32 depicts the location of these nodes.  Node 3 is the racom gateway buoy and it 

is also the master node from which network discovery is initiated.  While any 

node can be designated as the master, use of the racom gateway node permits 

constant monitoring of the discovery process, the cost function evaluations, and 

the global routing tables.  The Seaweb server resided onboard a Canadian 

Forces auxiliary vessel (CFAV Quest) with multiple radio communication links to 

the racom buoy. 

Node ID Position (ddmm.mmm) Node ID Position (ddmm.mmm) 
3 4435.609N 6359.712W 43 4436.713N 6358.396W 

16 4435.400N 6359.500W 44 4437.072N 6358.393W 
19 4435.279N 6400.633W 45 4437.347N 6358.483W 
20 4435.870N 6359.810W 46 4435.639N 6359.253W 
21 4436.350N 6359.900W 48 4434.302N 6359.727W 
22 4436.850N 6359.860W 50 4435.747N 6400.316W 
23 4437.340N 6359.710W 51 4436.468N 6400.629W 
24 4437.810N 6359.440W 52 4437.097N 6400.689W 
41 4435.790N 6358.580W 53 4437.694N 6400.904W 
42 4436.270N 6358.170W   

Table 1.   GPS coordinates of 19 nodes involved in June 2008 Seaweb ad hoc 
network discovery experiment. 
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Figure 32.   Location of 19 Seaweb nodes involved in the ad hoc network 
discovery trial.  Node 3 is the racom gateway buoy and the master node. 
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Figure 33 shows photographs taken from the actual trial depicting the 

three components of a Seaweb network – a Seaweb server, a racom gateway 

buoy, and a telesonar repeater node.  Refer to Chapter IV for a more detailed 

description of these components, including deployment configurations given in 

Figure 12. 

Seaweb server 
(onboard CFAV Quest)

Racom gateway buoy 

Seaweb node
(comprising weight, acoustic release, 
telesonar modem, and float)

RF, cellular, 
and SATCOM link

Acoustic link

Seaweb server 
(onboard CFAV Quest)

Racom gateway buoy 

Seaweb node
(comprising weight, acoustic release, 
telesonar modem, and float)

RF, cellular, 
and SATCOM link

Acoustic link

 
Figure 33.   Three components of a Seaweb network – Seaweb server, racom 

gateway buoy, and repeater node. 

B. TRIAL RESULTS 

The ad hoc network discovery experiment was conducted over several 

days using varying numbers of Seaweb nodes.  For the purpose of analysis and 

comparison in this chapter, only the 24 Jun 2008 trial results involving all 19 

nodes are presented.  The network discovery parameters are listed in Table 2. 

Parameter Value 
Master Node Node 3 
No. of Broadcast Ping 1 per peer discovery 
Ping Power Level 4 km (equivalent) 
Range Cutoff 4 km 
Preferred Hop Range 1 km 
Handicapped Nodes Node 3 

Table 2.   Network discovery parameters used on 24 June 2008. 
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Upon receipt of the ad hoc network discovery command and the user-

specified parameters from the Seaweb server, the master node initiated network 

discovery in accordance with the process described in Chapter V.  The resultant 

network routes are presented in Figure 34. 

 
 

Figure 34.   Resultant network routes upon completion of network discovery. 
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C. SIMULATION RESULTS 

Using the node deployment positions in Table 1 and the network discovery 

parameters in Table 2, the discovery process is simulated using the previously 

described computer model.  The node GPS coordinates are converted into a 

Cartesian coordinate 2-D plane [27] and depth variations associated with the 

deployed nodes are neglected.  The simulation assumes an environment with 

perfect communications connectivity, without any temporal or spatial variation in 

the acoustic channel.  The resultant network routes produced by the simulation 

are shown in Figure 35. 
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Figure 35.   Resultant network routes obtained from simulation using 24 June 

2008 trial coordinates and parameters. 

D. COMPARISON AND ANALYSIS 

A comparison between Figures 34 and 35 reveals that the simulation 

closely mirrors results from the sea trial, with three exceptions at nodes 24, 22 

and 51 respectively. 

Node 24 was the only node not found during the network discovery sea 

trial. Simulation indicates that it should have been discovered and routed via 

node 23.  Closer examination of the trial log reveals that node 24 did not respond 
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to any of the ping messages from its neighboring nodes.  Node 24 was 

essentially unreachable (non-participative) during the trial. 

Node 22 was routed via node 51 during the sea trial, whereas simulation 

indicates that it should have been routed via node 21 which was nearer and 

situated to its south.  Examination of the trial log reveals that node 21 did not 

discover node 22 during its peer discovery.  In fact, node 21 did not discover any 

nodes other than those situated to its south (nodes 20 and 3).  Node 22 was only 

discovered at a later stage during node 51’s peer discovery, hence the resultant 

route via node 51.  One possible explanation to node 21’s inability to discover 

node 22 may lie in the bathymetry of the area where node 21 was deployed.  

Bathymetry contours in Figure 34 show that there was a steep underwater cliff 

within 50 m to the northwest of node 21’s deployed position.  This may have 

obscured acoustic communications to the west and north of node 21, thus 

preventing it from discovering node 22 during peer discovery. 

Node 51 was routed via node 50 upon completion of the network 

discovery sea trial.  Simulation indicates that node 51 should have been routed 

directly via node 20.  The trial log reveals that node 20 did discover node 51 

during its peer discovery and routing to node 51 should have been as suggested 

by simulation, i.e., via node 20.  However, in trying to establish and distribute the 

routing table to node 51, there was a loss of communications connectivity 

between node 20 and node 51.  As a result, node 51 was routed via another 

node it had connectivity with, i.e., node 50. 

The total network costs ( NETWORKC ) associated with the simulation routes 

and the less optimal sea trial routes are 3.27 and 3.59, respectively.  The path 

cost to node 24 is not considered in the total network cost for both cases. 

The above comparison shows that the network discovery algorithm is a 

useful tool for accurate prediction of the resultant network routes in a perfect  
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connectivity environment.  This raises an interesting question.  How optimal are 

the resultant network routes obtained at the end of the ad hoc network discovery 

process? 

E. FOLLOW-ON ANALYSIS 

1. Comparison with Dijkstra’s Algorithm 

Dijkstra’s algorithm finds the shortest paths from a given source node to 

all other nodes in a network by developing the paths in order of increasing path 

length.  The algorithm proceeds in stages.  By the kth stage, the shortest paths to 

the k nodes closest to (least cost away from) the source node have been 

determined; these nodes are in a set T.  At stage k+1, the node not in T that has 

the shortest path from the source node is added to T.  As each node is added to 

T, its path from the source node is defined.  The algorithm terminates when all 

nodes have been added to T [28]. 

The ad hoc network discovery process detailed in Chapter V and 

implemented for Seaweb bears a remarkable resemblance to Dijkstra’s shortest 

path algorithm.  The source node in our case is the master node and the nodes 

in the network are the branch nodes that are discovered as the network 

discovery process unfolds.  Path lengths are the route costs calculated using the 

route cost evaluation function, and the set of nodes in T is the set of branch 

nodes with established routes and which have been directed by the master node 

to perform peer discovery. 

For a given set of nodes and the set of link costs between connected 

nodes, Dijkstra’s algorithm guarantees the best (lowest cost) path routes [24] 

from the master node to all discovered nodes in the network.  In order to 

determine the optimality of the resultant network routes produced by the ad hoc 

network discovery process, there is a need to compare it against the 

corresponding results from the Dijkstra’s algorithm.  Figure 36 illustrates such a 

comparison, using the 24 June 2008 node coordinates and the corresponding 

network discovery parameters. 
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(a) Ad hoc discovery algorithm 
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(b) Dijkstra’s algorithm 

 
Figure 36.   Comparison of results between simulation (top) and Dijkstra’s 

algorithm (bottom).  Both sets of resultant network routes are identical. 
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Both the simulation and Dijkstra’s algorithm produce the same set of 

resultant network routes.  This finding is not surprising since in the design of the 

ad hoc network discovery process, the master node always chooses the next 

nearest branch node to conduct peer discovery.  Routing to that selected branch 

node is established prior to its execution of broadcast pings.  Furthermore, 

neighbor information that is received at the master after each peer discovery are 

sorted based on increasing range before being aggregated into the master 

neighbor table.  Such an implementation mirrors Dijkstra’s concept of developing 

paths in order of increasing path length. 

Therefore, it is concluded that the set of resultant network routes obtained 

at the end of the ad hoc network discovery process, in a perfect connectivity 

environment, is a set of optimal shortest (lowest cost) paths between the master 

node and all other discovered nodes in the network. 

2. Cost Function Revision 

Recall that the route cost evaluation function was defined in Chapter V as  
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The cost function is used to evaluate multiple paths from the master node 

to a specific branch node in order to identify the path with the lowest cost.  The 

following section seeks to improve the empirically derived cost function by 

recognizing that complex routes are simply the sum of individual hops, as 

formulated in the cost function.  Hence, the route selection problem may be 

reduced to a 3-node problem. 

A B

C

ABr

ACr BCr

A B

C

ABr

ACr BCr

 
Figure 37.   Schematic of the 3-node routing problem. 

Given a source node A and a destination node B, an intermediate node C 

may be deployed with connections to both A and B.  The routing algorithm would 

evaluate the route costs associated with direct path A-B (1 hop) and indirect path 

A-C-B (2 hops).  Assuming no handicapping of nodes and a fixed user-specified 

preferred hop range (rp) of 1 km, Figure 38 depicts the loci of positions for 

intermediate node C, within which a 2-hop route will be chosen over a 1-hop 

route, for three distances (rAB) separating nodes A and B. 
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Figure 38.   Loci of positions for node C within which node C will be chosen as 

the intermediate node for the route from node A to node B.  rp = 1 km, and 
rAB = 2, 4, 6 km. 
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Notice that the locus of valid positions for node C to be chosen as an 

intermediate node using the current cost function is a vertical ellipse.  This 

implies that if node C is deployed along the perpendicular bisector of line AB, 

there exists a higher chance of node C being accepted as a valid intermediate 

node that anywhere else between nodes A and B.  Such an implication is 

undesired.  Figures 39-41 are a study of the effect on the locus shape in 

response to adjustments to the cost function. 
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Figure 39.   Effect of adding a coefficient ( 10α = ) to the first term in the cost 

function. 
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Figure 40.   Effect of adding a coefficient ( 10β = ) to the second term in the 

cost function. 
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Figure 41.   Effect of reducing the exponent ( 1γ = ) of the first term in the cost 

function. 
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It was subsequently determined that a cost function with a coefficient of 2 

in the second term ( 2β = ) results in a locus of valid positions for node C that is 

circular, thus implying that all positions within a certain range from the mid-point 

of A and B have the same probability of being selected as a valid intermediate 

node.  The corresponding loci of positions for node C is shown in Figure 42, and 

the revised route cost evaluation function for the ad hoc network discovery 

process is thus re-defined as 

=
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Figure 42.   Loci of positions for node C to be chosen an intermediate node 

based on the revised cost function, keeping preferred hop range fixed at 1 
km. 
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Figure 43.   Loci of positions for node C as a function of preferred hop range 

(rp), keeping distance between A and B fixed at 6 km. 

Figure 43 presents the loci of positions for node C to be chosen as an 

intermediate node, as a function of the preferred hop range, keeping the range 

between nodes A and B constant.  As the value of the preferred hop range 

increases, the locus shrinks, indicating that a direct long-distance hop (skipping 

node C as an intermediate node) is favored over a route comprising two short-

distance hops, unless node C is deployed near to the mid-point of node A and 

node B. 

3 Verification of the Revised Cost Function 

The ad hoc network discovery process with the revised route cost 

evaluation function was sea-tested at Horten, Norway in September 2008.  This 

time, the network consisted of only 9 nodes with a maximum node-to-node 

spacing of less than 1000 m.  The average water depth was 15 m.  The network 

discovery parameters used for the trial are listed in Table 3.  The resultant 

network routes obtained upon completion of the discovery process and that from 

simulation are presented in Figures 44 and 45 respectively. 
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Parameter Value 
Master Node Node 3 
No. of Broadcast Ping 2 per peer discovery 
Ping Power Level 1000 m (equivalent) 
Range Cutoff 1000 m 
Preferred Hop Range 150 m 
Handicapped nodes Node 3 

Table 3.   Network discovery parameters used on 24 September 2008. 

 
Figure 44.   Resultant network routes from the September sea trial using 

revised cost function. 

 



 60

 

1 1.1 1.2 1.3 1.4 1.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [km]

y 
[k

m
]

3

10

11

13 14

20

21

30

31

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

 

1 1.1 1.2 1.3 1.4 1.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [km]

y 
[k

m
]

3

10

11

13 14

20

21

30

31

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

 
Figure 45.   Simulation results using revised cost function and Sep trial 

coordinates. 

The sea trial results indicate that the revised cost function is feasible and 

capable of producing a set of network routes that are optimal since it matches the 

simulation results, which are in turn a set of Dijkstra’s shortest (lowest cost) paths 

as previously discussed.  For the sake of comparison, the set of network routes 

from simulation with the original cost function is shown in Figure 46.  Notice that 

the only difference is node 10 is not favored as an intermediate node for the 

route from master node 3 to node 30 when the revised cost function is used. 
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Figure 46.   Simulation results using the original cost function and Sep trial 

coordinates. 
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VII. AN ALTERNATIVE NETWORK DISCOVERY PROCESS 

The ad hoc network discovery process presented in the preceding two 

chapters worked well in an acoustic environment not severely affected by spatial 

and temporal variations in propagation conditions.  The resultant network routes, 

obtained under such a favorable connectivity environment, are a set of Dijkstra’s 

shortest paths from the master node to all discovered nodes in the network. 

However, when there is a temporary loss of connectivity with one or more 

branch nodes, especially during route establishment or distribution of local 

routing tables, the resultant route to the affected node may not be the shortest 

(lowest cost) path.  Such a scenario was encountered with node 51 during the 

June 2008 sea trial detailed in Chapter V.  In fact, some resultant routes may be 

circuitous in nature. 

In an attempt to address this issue and to refine the network discovery 

process, this chapter presents an alternative network discovery scheme that tries 

to gather as much neighborhood information as possible prior to establishing a 

route to a specific branch node.  This alternative discovery scheme is based 

largely on the original implemented network discovery process.  However, the 

alternative scheme exploits the network-layer feature of cellular addressing, 

introduced in Chapter IV. 

A. DESCRIPTION 

The functionalities of peer discovery (broadcast ping) and route 

establishment in the alternative scheme are unchanged from the original network 

discovery process detailed in Chapter V.  The key difference is that the master 

node now uses cellular addressing to communicate with the neighbors of a 

routed branch node.  The use of cellular addressing enables the master to direct 

these neighbor nodes to perform peer discovery an additional ply into the 

network, thereby increasing the master’s knowledge of the network before a  

 



 62

routing decision to the next nearest branch node is made.  This is in contrast to 

the original implemented process where a node is always routed to prior to being 

directed to perform a peer discovery. 

Figures 47-55 illustrate the alternative discovery process, up to the point 

of completion when all the immediate neighbors of node A (tier 1 nodes) are 

routed. 
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Figure 47.   Master node A performs neighborhood discovery and finds nodes 
B, C, and D. 
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Figure 48.   Master node A uses cellular addressing (orange lightning symbol) 
to direct nearest node B to perform peer discovery.  Node B sends 

neighbor information back to master node utilizing the cellular address 
(node A). 
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Figure 49.   Master node A uses cellular addressing to direct next nearest node 
C to perform peer discovery.  Master node expands its knowledge of 

network. 
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Figure 50.   Master node A uses cellular addressing to direct next nearest node 
D to perform peer discovery.  No other nodes are reachable via cellular 

address (node A). 
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Figure 51.   Master node examines master neighbor table to establish lowest 

cost route (red arrow) to nearest immediate neighbor node B. 
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Figure 52.   After routing to node B, master node A uses cellular address (node 
B) to direct node B’s neighbors to conduct peer discovery one at a time.  

Master node’s knowledge of the network is further expanded. 
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Figure 53.   Master node A establishes route to its next nearest immediate 

neighbor node C. 
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Figure 54.   After routing to node C, master node A uses cellular address (node 

C) to direct node P to perform peer discovery.  Node P found node Q.  No 
other nodes that have not performed peer discovery are reachable via 

cellular address (node C). 
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Figure 55.   Master node establishes route to next nearest neighbor node D.  
Node D does not have any immediate neighbors that have not performed 

peer discovery. 



 67

Upon completion of routing to all its immediate neighbor nodes (as 

depicted in Figure 55), the master node proceeds to establish a route to the next 

nearest node (in this case node J), sets it as the cellular address, and the 

discovery cycle is repeated.  The network discovery process terminates when no 

more new nodes are discovered and all discovered nodes have been routed. 

B. COMPARISON WITH ORIGINAL DISCOVERY PROCESS 

Evident from the preceding illustrations, the alternative discovery process 

allows the master node to acquire a more extensive knowledge of the network 

before a routing decision is made.  Such an expanded knowledge of the network 

would be useful in the event of temporary loss of connectivity with one or more 

nodes as this would present more path options to the master node as it tries to 

establish a “next best” route. 

In a perfect connectivity environment, both the original discovery process 

and the alternative discovery scheme produce the same resultant network 

routes.  This is because in such an environment, all nodes within earshot of a 

broadcast ping would have responded and the master node’s knowledge of the 

network up to the range of the specific branch node that conducted peer 

discovery is the same in both cases.  While the alternative discovery process 

presents the master node with more path options to the branch node, the 

shortest (lowest cost) path is always one that comprises intermediate nodes that 

lie between the master and that branch node.  Therefore, expanded knowledge 

of the network beyond the range of that branch node, made possible by the 

alternative discovery process, does not serve to improve the shortest path routes 

in a perfect connectivity environment.  Figure 56 shows the simulation results 

from both the discovery processes using June 2008 trial coordinates and the 

revised cost function. 
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Figure 56.   Simulation results from the original discovery process (left) are the 
same as that from the alternative discovery process (right) in a perfect 

connectivity environment. 

In reality, the underwater acoustic environment is an imperfect 

connectivity channel.  The benefit of having an expanded knowledge of the 

network before route establishment seems invaluable.  Moreover, the acquisition 

of range data gives opportunity for localizing the nodes during the discovery 

process rather than afterwards. 

Figure 57 presents the program flowchart of the alternative discovery 

process (discover before route) contrasted against the original implemented 

network discovery process (route before discover). 
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Figure 57.   Comparison between the original and the alternative discovery 

schemes. 
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VIII. CONCLUSIONS 

A. SUMMARY 

This thesis developed and implemented a Seaweb network discovery 

process in an effort to enable spontaneous deployment of ad hoc autonomous 

nodes capable of auto-configuration for networking purposes. 

The network discovery process builds upon existing Seaweb link-layer and 

network-layer features.  Neighborhood discovery is conducted in tandem with 

network routing under the centralized control of a master node.  Simulation and 

at-sea trial data indicate that the implemented discovery process is feasible, and 

in the absence of loss of connectivity, the resultant network routes obtained upon 

completion of the discovery process are a set of optimal Dijkstra’s shortest 

(lowest cost) paths from the master node to all discovered nodes in the network.  

Refinements to the route cost evaluation function were identified and tested at 

sea. 

An alternative discovery scheme aimed at expanding the master node’s 

knowledge of the network before any route establishment is also discussed.  It is 

believed that the alternative discovery process is more robust in an environment 

affected by temporal and spatial variations in the acoustic channel. 

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Alternative Network Discovery Process 

The simulation results presented in this thesis assume an environment 

with perfect acoustic communication connectivity.  In order to quantify the 

expected advantage afforded by the alternative network discovery scheme 

(discover before route) over the original implemented discovery process (route 

before discover), there is a need to simulate an environment where the 

probability associated with loss of communication connectivity is modeled.  
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Results from such a simulation can subsequently inform the actual 

implementation of the alternative discovery process. 

2. Node Localization 

Ad hoc network initialization can sometimes entail the need for node 

localization.  Conceptually, the master node needs at least three different sets of 

node-to-node ranges in order to triangulate a particular node, relative to a local 

coordinate system.  Such a localization algorithm can be incorporated to work in 

tandem with the network discovery process.  As peer discovery ripples through 

the network and the global neighbor table is populated, the master node can 

process the node-to-node ranges and localize discovered nodes. 

3. Route Optimization 

The network routes obtained upon completion of the network discovery 

process are a set of optimal (lowest cost) bi-directional routes from the master 

node to all discovered nodes in the network.  However, these routes are not 

optimized between any two arbitrary branch nodes trying to communicate with 

each other.  A peer-to-peer route optimization is required.  The neighborhood 

information contained in the global neighbor table provides the necessary data to 

initiate a route optimization algorithm.  Once peer-to-peer routes are optimized, 

the master node may update the local routing tables of all branch nodes. 

4. Quickening the Discovery Process 

The network discovery process developed in this thesis follows an 

exhaustive and sequential approach. As such, the execution of this process is 

time-consuming with duration on the order of N2.  There is opportunity for 

speeding up the process with adaptive tuning of timers associated with the 

broadcast ping processes. 
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APPENDIX A NETWORK DISCOVERY SOURCE CODE 

// Ad Hoc Network Discovery Code (ver 13 Aug 08) 
// Ong Chee Wei 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define N 50                // No. of nodes 
#define A 15                // Area A km by A km 
#define cutoff_rng 4        // Cutoff range (km) for nodes to be considered immediate nbrs 
#define ping_pwr_lvl 8      // Broadcast ping power level (1 to 8). Ranges defined in Ping function 
#define P_echo_fail 0.0     // Probability (0 to 1) of echo failure in response to each ping 
#define no_of_pings 1       // User defined no. of broadcast pings (1 or 2) 
#define metric 1            // User defined metric (km) corresponding to preferred hop length 
#define handicap_val 0.5    // User defined handicap value (0.5 or 1) at master node (RACOM buoy) 
#define C1 1                // New Cost Fn weight associated with 1st term 
#define C2 2                // New Cost Fn weight associated with 2nd term 
#define E1 2                // New Cost Fn exponent associated with 1st term 
 
struct posn { 
       float x;             // node position 
       float y; 
       char address;        // pre-configured unique 8 bit node address 
       char srl; 
       }; 
struct posn g_posn[N];      // Global position structure 
 
float g_rng[N][N];          // True Range lookup table b/w nodes 
 
struct nbr { 
       float range; 
       char address;           
       }; 
 
struct Nbr_table { 
       struct posn myposn; 
       char myaddress; 
       char found_by; 
       int rt[N];                // local routing vector 
       struct nbr mynbr[N]; 
       }; 
struct Nbr_table Node[N];        // Node Neighbour Table 
 
struct m_nbr { 
       char address; 
       float range1; 
       float range2; 
       float filtered_range; 
       }; 
 
struct M_Nbr_table { 
       char address; 
       struct m_nbr nbr_node[N]; 
       }; 
struct M_Nbr_table M_NT_row[N];  // Master Neighbour Table 
 
int M_Routing_table[N][N];       // Master Routing Table 
 
int ping(int m, int ping_node, int pwr_lvl);   // Ping function declaration 
void transfer(int m, int fr, int to);          // Tranfer function declaration 
int aggregate(int m, int ping_node);           // Aggregate function declaration 
void determine_route(int m, int ping_node);    // Determine Route function declaration 
void distribute_route(int m, int ping_node);   // Distribute Route function declaration 
 
float min_route_cost[N];         // min route cost table 
 
/* Main Program */ 
main(){ 
 
       FILE *out0, *out1, *out2; 
       out0=fopen("log.out", "w"); 
       out1=fopen("g_posn.out", "w"); 
       out2=fopen("rng_table.out", "w"); 
       FILE *out5; 
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       out5=fopen("graph.out","w"); 
        
       int node_i, node_j;       // counters 
 
//------------------------------------------------             
       /* Global position to setup N nodes in A km by A km area */ 
       for (node_i=0; node_i<N; node_i++){ 
           g_posn[node_i].x = (float)rand()/RAND_MAX*A; 
           g_posn[node_i].y = (float)rand()/RAND_MAX*A; 
           g_posn[node_i].address = 20 + node_i;       // node address starts from 20 
            
           Node[node_i].myaddress = g_posn[node_i].address;   // each node knows its address 
            
           fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y, 
g_posn[node_i].address); 
           } 
       fclose(out1); 
 
//------------------------------------------------ 
//       /* Global position of N nodes read-in from input0.in file */ 
//       FILE *in1; 
//       in1=fopen("input0.in", "r"); 
//               
//       for (node_i=0; node_i<N; node_i++){ 
//           fscanf(in1,"%f %f %d", &g_posn[node_i].x, &g_posn[node_i].y, &g_posn[node_i].srl); 
//           g_posn[node_i].address = 20 + node_i;       // node address starts from 20 
//           Node[node_i].myaddress = g_posn[node_i].address;   // each node knows its address 
//           fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y, 
g_posn[node_i].address); 
//           } 
//       fclose(in1); 
//       fclose(out1); 
//-------------------------------------------------              
                   
       /* Compute true range between nodes i and j (stored in look-up table)*/     
       for (node_i=0; node_i<N; node_i++){ 
           for (node_j=0; node_j<N; node_j++){ 
               g_rng[node_i][node_j] = sqrt((g_posn[node_i].x-g_posn[node_j].x)*(g_posn[node_i].x-
g_posn[node_j].x)  
                                          + (g_posn[node_i].y-g_posn[node_j].y)*(g_posn[node_i].y-
g_posn[node_j].y)); 
               fprintf(out2, "g_rng[%d][%d]\t %f\n", node_i, node_j, g_rng[node_i][node_j]); 
               }        
           } 
       fclose(out2);       
        
////////*** Network Discovery ***///////// 
       int m, p, i, j;                        // m = Master node index, p = ping node index 
       int nodes_found=0, total_nodes_found=1, new_nodes_found=0; 
       int initialise=0, ping_tries; 
        
       FILE *out3; 
       out3=fopen("M_NT.out", "w"); 
        
       for (i=0; i<total_nodes_found; i++){ 
           if (initialise == 0){              // Master node initialisation 
              m=0;                            // Master node index set to 0 
              p = m;                          // p = index of Ping Node 
              initialise = 1; 
              } 
           else p = M_NT_row[i].address - 20;               // index of subsequent Ping Node 
 
           determine_route(m, p);                           // Master determines route to Ping Node 
            
           distribute_route(m, p);                          // Master updates route to Ping Node 
 
           for (ping_tries=0; ping_tries<no_of_pings; ping_tries++){ 
               nodes_found = ping(m, p, ping_pwr_lvl);      // User-defined No. of Discovery Pings 
               if (nodes_found > 0) 
                  transfer(m, p, m);                        // Ping node sends nbr data to M_NT 
               }    
            
           new_nodes_found = aggregate(m, p);               // Master aggregates data and expands M_NT 
            
           total_nodes_found = total_nodes_found + new_nodes_found; 
           } 
 
       printf("\nNo. of nodes NOT discovered = %d\n\n", N-total_nodes_found); 
////////*** End Network Discovery ***///////// 
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//--------------------------------------------                         
       /* Output M_NT */     
       for (i=0; i<total_nodes_found; i++){ 
           j=0; 
           fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address, 
                  M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range, 
                  M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2); 
           for (j=1; j<N; j++){ 
               if (M_NT_row[i].nbr_node[j].address != 0){ 
                   fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address, 
                           M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range, 
                           M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2); 
                  } 
                  else break; 
               } 
           } 
            
       fprintf(out0,"\nNo. of nodes NOT discovered = %d\n\n\n", N-total_nodes_found); 
        
       fclose(out3);     
       fclose(out0); 
       fclose(out5);       
        
       /* Output local routing vectors */ 
       FILE *out6; 
       out6=fopen("M_RT.out","w"); 
       for (i=0; i<N; i++){ 
           fprintf(out6,"Node %d\t", Node[i].myaddress); 
           for (j=0; j<N; j++){ 
               fprintf(out6,"%d\t", Node[i].rt[j]); 
               } 
           fprintf(out6,"\n"); 
           } 
       fclose(out6); 
        
       /* Output min route cost */ 
       FILE *out7; 
       out7=fopen("min_route_cost.out","w"); 
       for (i=0; i<N; i++){ 
           fprintf(out7,"%d\t %f\n", Node[i].myaddress, min_route_cost[i]); 
           } 
       fclose(out7);           
//------------------------------------------------        
 
       system("PAUSE"); 
       } 
 
////////////////////////////////////////////////////////////////////////////////////////////////// 
 
/* Ping function definition */ 
int ping (int m, int ping_node_idx, int pwr_lvl){ 
       FILE *out0; 
       out0=fopen("log.out", "a"); 
       int i, j, hit = 0; 
       int exist, k = 0;                 // k = index to Nbr table 
       float power[8] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0};    // 8 ping ranges 
       float ping_rng = power[pwr_lvl-1]; 
               
       int node_idx = m, broadcast_ping = 0, route_node; 
        
       if (node_idx == ping_node_idx) broadcast_ping = 1;            // Master Node Ping 
       else { 
            while (node_idx != ping_node_idx){                       // forward the ping command 
                  route_node = Node[node_idx].rt[ping_node_idx];                                    
                  node_idx = route_node - 20;                        // index of route node 
                  if (node_idx == ping_node_idx) broadcast_ping = 1; 
                  } 
            } 
 
       /* Broadcast Ping */ 
       float P_rand; 
        
       if (broadcast_ping == 1){ 
                                               
       for (i=0; i<N; i++){ 
           if (i!=node_idx){ 
           P_rand = (float)rand()/RAND_MAX;   // generate random echo return probability at each node 
           if (g_rng[node_idx][i] <= ping_rng){            
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           if (P_rand >= P_echo_fail){        // proceed with echo in response to broadcast ping 
              for (j=0; j<N; j++){            // check if node i exists in Nbr table 
                  if (Node[node_idx].mynbr[j].address == g_posn[i].address){ 
                     exist = 1; 
                     Node[node_idx].mynbr[j].range = g_rng[node_idx][i];    // retain the latest range 
                     break; 
                     }  
                  else exist = 0; 
                  } 
              if (exist == 0){                // node i is a new node 
                 for (j=0; j<N; j++){ 
                     if (Node[node_idx].mynbr[j].address == 0){ 
                        k = j; 
                        break; 
                        } 
                     } 
                 Node[node_idx].mynbr[k].range = g_rng[node_idx][i]; 
                 Node[node_idx].mynbr[k].address = Node[i].myaddress; 
               
                 fprintf(out0,"Pwr lvl %d\t Node %d\t discovered Node %d\t at Range = %f\n", 
                         pwr_lvl, Node[node_idx].myaddress, Node[node_idx].mynbr[k].address,  
                         Node[node_idx].mynbr[k].range); 
                 }  // end of if 
              hit = hit + 1;                  // no. of neighbours found 
              }   // end of if 
              } 
           } 
           }  // end of for       
       return(hit);                          // return no. of neighbours discovered 
       }  // end of if 
       } 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
 
/* Transfer neighbour data from Ping node to Master node to be stored in M_NT function definition */ 
void transfer (int m, int fr, int to){ 
       int i, j, k; 
       struct Nbr_table temp_NT[N]; 
       int idx, route_node, nodes_found, exist; 
      
       if (fr == m){ 
          printf("%d ", Node[fr].myaddress); 
          temp_NT[to] = Node[m];                           // at Master node 
          } 
       else { 
            idx = fr; 
            temp_NT[fr] = Node[fr]; 
            while (idx != to){ 
            printf("%d ", Node[fr].myaddress); 
                  route_node = Node[idx].rt[to];           // reverse path transfer 
                  idx = route_node - 20; 
                  temp_NT[idx] = temp_NT[fr]; 
                  fr = idx; 
                  } 
            if (idx == to) temp_NT[to] = temp_NT[idx];     // at Master node 
            } 
       printf("%d\n", Node[to].myaddress); 
  
        
       for (i=0; i<N; i++){ 
           if (temp_NT[to].mynbr[i].address == 0){ 
              nodes_found = i;              // determine no. of nodes found by ping node 
              break; 
              } 
           } 
       for (i=0; i<N; i++){ 
           if (M_NT_row[i].address == temp_NT[to].myaddress){ 
              k = i;                        // row index in M_NT corresponding to ping node 
              break; 
              } 
           } 
       for (i=0; i<nodes_found; i++){ 
           for (j=0; j<N; j++){             // check if node i exists in M_NT_row[k] 
               if (M_NT_row[k].nbr_node[j].address == temp_NT[to].mynbr[i].address){ 
                  exist = 1; 
                  M_NT_row[k].nbr_node[j].range2 = temp_NT[to].mynbr[i].range; 
                  break; 
                  } 
               else exist = 0; 
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               } 
           if (exist == 0){                 // node i is a new node in M_NT_row[k] 
              for (j=0; j<N; j++){ 
                  if (M_NT_row[k].nbr_node[j].address == 0)    // find empty row 
                     break; 
                  } 
              M_NT_row[k].nbr_node[j].address = temp_NT[to].mynbr[i].address; 
              M_NT_row[k].nbr_node[j].range1 = temp_NT[to].mynbr[i].range; 
              } 
           }   
       } 
        
////////////////////////////////////////////////////////////////////////////////////////////////        
 
/* Master node aggregates data and expand M_NT function definition */ 
int aggregate (int m, int ping_node_idx){ 
       int i, j, k, exist, nodes_found, new_nodes = 0; 
       float range, range1, range2; 
                     
       for (i=0; i<N; i++){ 
           if (M_NT_row[i].address == Node[ping_node_idx].myaddress){ 
              k = i;               // row index k in M_NT corresponding to ping node 
              break; 
              } 
           } 
       for (i=0; i<N; i++){ 
           if (M_NT_row[k].nbr_node[i].address == 0){ 
              nodes_found = i;     // determines no. of nodes found by ping node 
              break; 
              } 
           } 
        
       for (i=0; i<nodes_found; i++){        // Master node aggregates ranges & checks for new node 
           range1 = M_NT_row[k].nbr_node[i].range1; 
           range2 = M_NT_row[k].nbr_node[i].range2; 
           if (range1 != 0 && range2 == 0) range = range1;       // rules to filter 2 ranges 
           if (range1 == 0 && range2 != 0) range = range2; 
           if (range1 != 0 && range2 != 0) range = (range1 + range2) * 0.5; 
           M_NT_row[k].nbr_node[i].filtered_range = range; 
           } 
 
       struct m_nbr Temp;            
       for (i=0; i<nodes_found; i++){         // Bubble Sort according to range 
           for (j=0; j<nodes_found-i-1; j++){ 
               if (M_NT_row[k].nbr_node[j].filtered_range > M_NT_row[k].nbr_node[j+1].filtered_range){ 
                  Temp = M_NT_row[k].nbr_node[j]; 
                  M_NT_row[k].nbr_node[j] = M_NT_row[k].nbr_node[j+1]; 
                  M_NT_row[k].nbr_node[j+1] = Temp; 
                  } 
               } 
           }  
 
       for (i=0; i<nodes_found; i++){         
           for (j=0; j<N; j++){ 
               if (M_NT_row[k].nbr_node[i].address == M_NT_row[j].address){ 
                  exist = 1; 
                  break; 
                  } 
               else exist = 0; 
               } 
           if (exist == 0){            // M_NT_row[k].nbr_node[i] is a new node 
                                       // apply cutoff range to determine immediate nbrs 
              if (M_NT_row[k].nbr_node[i].filtered_range <= cutoff_rng){      
                 for (j=0; j<N; j++){ 
                     if (M_NT_row[j].address == 0)     // find empty row in M_NT 
                        break; 
                     } 
                 M_NT_row[j].address = M_NT_row[k].nbr_node[i].address;  // expand M_NT 
                 new_nodes++;                         
                 } 
              } 
           } 
       return(new_nodes); 
       } 
               
////////////////////////////////////////////////////////////////////////////////////////////////// 
 
/* Master node determines route to Ping Node (node_idx) function definition */ 
void determine_route (int m, int node_idx){ 
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       int i, j, k, exist; 
       FILE *out5; 
       out5=fopen("graph.out","a"); 
 
       M_Routing_table[node_idx][node_idx] = Node[node_idx].myaddress; 
        
       if (node_idx == m){         // initialise M_NT for Master node 
          M_NT_row[0].address = Node[m].myaddress; 
          Node[m].found_by = Node[m].myaddress; 
 
          fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,  
                 Node[node_idx].myaddress, Node[node_idx].found_by); 
 
          return; 
          }        
        
       for (i=0; i<N; i++){ 
           if (M_NT_row[i].address == Node[node_idx].myaddress){ 
              k = i;               // row index k in M_NT corresponding to node index 
              break; 
              } 
           } 
        
        
       if (M_Routing_table[m][node_idx] != 0)   // check if route exist 
          exist = 1; 
       else exist = 0;        
 
       int idx, route_node, low_route_node, r, s, found; 
       float route_value, low_route_value=10000; 
        
       if (exist == 0){ 
          for (i=0; i<k; i++){ 
              found = 0; 
              for (j=0; j<N; j++){ 
                  if (M_NT_row[i].nbr_node[j].address == 0) break; 
                  if (M_NT_row[i].nbr_node[j].address == Node[node_idx].myaddress){ 
                     if (M_NT_row[i].nbr_node[j].filtered_range <= cutoff_rng){ 
                        found = 1; 
                        idx = M_NT_row[i].address - 20; 
 
                        float metr; 
                        if (idx == m) metr = handicap_val*metric;    // handicap master node 
                        else metr = metric; 
                         
                        route_value = (C1*pow(((M_NT_row[i].nbr_node[j].filtered_range - metr)/metr), 
E1) + C2*M_NT_row[i].nbr_node[j].filtered_range/metr); 
                         
                        while (idx != m){ 
                              route_node = M_Routing_table[idx][m]; 
 
                              for (r=0; r<N; r++){ 
                                  if (M_NT_row[r].address == route_node) 
                                     break;        // row index r in M_NT corresponding to route_node 
                                  } 
                              for (s=0; s<N; s++){ 
                                  if (M_NT_row[r].nbr_node[s].address == Node[idx].myaddress) 
                                     break;        // nbr index s in M_NT_row[r] corresponding to idx 
                                  } 
                               
                              idx = route_node - 20; 
                               
                              if (idx == m) metr = handicap_val*metric;    // handicap master node 
                              else metr = metric; 
                               
                              route_value += (C1*pow(((M_NT_row[r].nbr_node[s].filtered_range - 
metr)/metr), E1) + C2*M_NT_row[r].nbr_node[s].filtered_range/metr); 
 
                              }    // end while 
                        } 
                     break; 
                     } 
                  }  // end for 
 
              if (found == 1){ 
                 if (route_value < low_route_value){    // select lowest cost route 
                    low_route_value = route_value; 
                    low_route_node = M_NT_row[i].address; 
                    min_route_cost[node_idx] = low_route_value; 
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                    } 
                 } 
              }   // end for 
           
          Node[node_idx].found_by = low_route_node; 
          M_Routing_table[node_idx][low_route_node-20] = low_route_node; 
           
          fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,  
                  Node[node_idx].myaddress, Node[node_idx].found_by); 
           
          int idx1=low_route_node-20, idx2=node_idx; 
           
          while (idx2 != m){          // update M_Routing_table 
                M_Routing_table[idx2][m] = Node[idx1].myaddress; 
                M_Routing_table[idx1][node_idx] = Node[idx2].myaddress; 
                idx2 = idx1; 
                idx1 = Node[idx1].found_by - 20; 
                }    // end while 
          }   // end if 
       } 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////
////// 
 
/* Master distribute route to Ping Node (update local routing table) function definition */ 
void distribute_route (int m, int node_idx){ 
       int j, idx1=m, idx2; 
 
       if (node_idx == m){ 
          for (j=0; j<N; j++) 
              Node[m].rt[j] = M_Routing_table[m][j]; 
          return; 
          } 
        
       while (idx1 != node_idx){ 
             idx2 = M_Routing_table[idx1][node_idx] - 20;             
             for (j=0; j<N; j++){ 
                 Node[idx1].rt[j] = M_Routing_table[idx1][j]; 
                 Node[idx2].rt[j] = M_Routing_table[idx2][j]; 
                 } 
             idx1 = idx2;              
             } 
       } 
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APPENDIX B ALTERNATIVE NETWORK DISCOVERY 
SOURCE CODE 

// Alternative Network Discovery Code (ver 15 Aug 08) 
// Ong Chee Wei 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define N 50                // No. of nodes 
#define A 15                // Area A km by A km 
#define cutoff_rng 4        // Cutoff range (km) for nodes to be considered immediate nbrs 
#define ping_pwr_lvl 8      // Broadcast ping power level (1 to 8). Ranges defined in Ping function 
#define P_echo_fail 0.0     // Probability (0 to 1) of echo failure in response to each ping 
#define no_of_pings 1       // User defined no. of broadcast pings (1 or 2) 
#define metric 1            // User defined metric (km) corresponding to preferred hop length 
#define handicap_val 0.5    // User defined handicap value (0.5 or 1) at master node (RACOM buoy) 
#define C1 1                // New Cost Fn weight associated with 1st term 
#define C2 2                // New Cost Fn weight associated with 2nd term 
#define E1 2                // New Cost Fn exponent associated with 1st term 
 
struct posn { 
       float x;             // node position 
       float y; 
       char address;        // pre-configured unique 8 bit node address 
       char srl; 
       }; 
struct posn g_posn[N];      // Global position structure 
 
float g_rng[N][N];          // True Range lookup table b/w nodes 
 
struct nbr { 
       float range; 
       char address; 
       }; 
 
struct Nbr_table { 
       struct posn myposn; 
       char myaddress; 
       char found_by; 
       int rt[N];                // local routing vector 
       struct nbr mynbr[N]; 
       }; 
struct Nbr_table Node[N];        // Node Neighbour Table 
 
struct m_nbr { 
       char address; 
       float range1; 
       float range2; 
       float filtered_range; 
       }; 
 
struct M_Nbr_table { 
       char address; 
       struct m_nbr nbr_node[N]; 
       }; 
struct M_Nbr_table M_NT_row[N];  // Master Neighbour Table 
 
int M_Routing_table[N][N];       // Master Routing Table 
 
int ping(int m, int ping_node, int pwr_lvl, int cell);       // Ping function declaration 
void transfer(int m, int fr, int to, int cell);              // Tranfer function declaration 
int aggregate(int m, int ping_node);                         // Aggregate function declaration 
void determine_route(int m, int ping_node, int ping_ptr);    // Determine Route function declaration 
void distribute_route(int m, int ping_node);                 // Distribute Route function declaration    
 
float min_route_cost[N];         // min route cost table 
 
/* Main Program */ 
main(){ 
 
       FILE *out0, *out1, *out2; 
       out0=fopen("log.out", "w"); 
       out1=fopen("g_posn.out", "w"); 
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       out2=fopen("rng_table.out", "w"); 
       FILE *out5; 
       out5=fopen("graph.out","w"); 
        
       int node_i, node_j;       // counters 
 
//------------------------------------------------                         
       /* Global position to setup N nodes in A km by A km area */ 
       for (node_i=0; node_i<N; node_i++){ 
           g_posn[node_i].x = (float)rand()/RAND_MAX*A; 
           g_posn[node_i].y = (float)rand()/RAND_MAX*A; 
           g_posn[node_i].address = 20 + node_i;       // node address starts from 20 
            
           Node[node_i].myaddress = g_posn[node_i].address;   // each node knows its address 
            
           fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y, 
g_posn[node_i].address); 
           } 
       fclose(out1); 
 
//------------------------------------------------ 
//       /* Global position of N nodes read-in from input.in file */ 
//       FILE *in1; 
//       in1=fopen("input0.in", "r"); 
//               
//       for (node_i=0; node_i<N; node_i++){ 
//           fscanf(in1,"%f %f %d", &g_posn[node_i].x, &g_posn[node_i].y, &g_posn[node_i].srl); 
//           g_posn[node_i].address = 20 + node_i;       // node address starts from 20 
//           Node[node_i].myaddress = g_posn[node_i].address;   // each node knows its address 
//           fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y, 
g_posn[node_i].address); 
//           } 
//       fclose(in1); 
//       fclose(out1); 
//-------------------------------------------------               
                   
       /* Compute true range between nodes i and j (stored in look-up table)*/     
       for (node_i=0; node_i<N; node_i++){ 
           for (node_j=0; node_j<N; node_j++){ 
               g_rng[node_i][node_j] = sqrt((g_posn[node_i].x-g_posn[node_j].x)*(g_posn[node_i].x-
g_posn[node_j].x)  
                                          + (g_posn[node_i].y-g_posn[node_j].y)*(g_posn[node_i].y-
g_posn[node_j].y)); 
               fprintf(out2, "g_rng[%d][%d]\t %f\n", node_i, node_j, g_rng[node_i][node_j]); 
               }        
           } 
       fclose(out2); 
              
////////*** Network Discovery ***///////// 
       int m, p, r, i, j;                 // m = Master node index, p = ping node index, r = route 
node index 
       int nodes_found=0, total_nodes_found=1, new_nodes_found[N]; 
       int initialise=0, ping_tries, ping_ptr, cell_idx; 
        
       FILE *out3; 
       out3=fopen("M_NT.out", "w"); 
        
       for (i=0; i<total_nodes_found; i++){ 
           if (initialise == 0){               // Master node initialisation 
              m = 0;                           // Master node index set to 0 
              p = m;                           // p = index of Ping Node 
              r = m;                           // r = index of node to be routed to 
              cell_idx = m;                                 
              ping_ptr = 0; 
              initialise = 1; 
              } 
           else r = M_NT_row[i].address - 20;              // index of subsequent Route Node 
  
           determine_route(m, r, ping_ptr);                // Master determines route to Route Node 
 
           distribute_route(m, r);                         // Master updates route to Route Node 
 
           if (p == m){ 
           for (ping_tries=0; ping_tries<no_of_pings; ping_tries++){ 
               nodes_found = ping(m, p, ping_pwr_lvl, cell_idx);      
               if (nodes_found > 0) 
                  transfer(m, p, m, cell_idx);             // Ping node sends nbr data to M_NT 
               }  
           new_nodes_found[ping_ptr] = aggregate(m, p);    // Master aggregates data and expands M_NT 
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           total_nodes_found = total_nodes_found + new_nodes_found[i]; 
           ping_ptr++; 
           } 
            
           cell_idx = M_NT_row[i].address-20; 
           for (j=0; j<new_nodes_found[i]; j++){ 
               if (ping_ptr >= N) break; 
               p = M_NT_row[ping_ptr].address - 20; 
               for (ping_tries=0; ping_tries<no_of_pings; ping_tries++){ 
                   nodes_found = ping(m, p, ping_pwr_lvl, cell_idx); 
                   if (nodes_found > 0) 
                      transfer(m, p, m, cell_idx);  
                   }    
               new_nodes_found[ping_ptr] = aggregate(m, p); 
               total_nodes_found = total_nodes_found + new_nodes_found[ping_ptr]; 
               ping_ptr++; 
               }        
           } 
 
       printf("\nNo. of nodes NOT discovered = %d\n\n", N-total_nodes_found); 
////////*** End Network Discovery ***///////// 
 
//--------------------------------------------                         
       /* Output M_NT */     
       for (i=0; i<total_nodes_found; i++){ 
           j=0; 
           fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address, 
                  M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range, 
                  M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2); 
           for (j=1; j<N; j++){ 
               if (M_NT_row[i].nbr_node[j].address != 0){ 
                   fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address, 
                           M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range, 
                           M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2); 
                  } 
                  else break; 
               } 
           } 
            
       fprintf(out0,"\nNo. of nodes NOT discovered = %d\n\n\n", N-total_nodes_found); 
        
       fclose(out3);     
       fclose(out0); 
       fclose(out5);       
        
       /* Output local routing vectors */ 
       FILE *out6; 
       out6=fopen("M_RT.out","w"); 
       for (i=0; i<N; i++){ 
           fprintf(out6,"Node %d\t", Node[i].myaddress); 
           for (j=0; j<N; j++){ 
               fprintf(out6,"%d\t", Node[i].rt[j]); 
               } 
           fprintf(out6,"\n"); 
           } 
       fclose(out6); 
        
       /* Output min route cost */ 
       FILE *out7; 
       out7=fopen("min_route_cost.out","w"); 
       for (i=0; i<N; i++){ 
           fprintf(out7,"%d\t %f\n", Node[i].myaddress, min_route_cost[i]); 
           } 
       fclose(out7);           
//------------------------------------------------        
 
       system("PAUSE"); 
       } 
 
////////////////////////////////////////////////////////////////////////////////////////////////// 
 
/* Ping function definition */ 
int ping (int m, int ping_node_idx, int pwr_lvl, int cell_idx){ 
       FILE *out0; 
       out0=fopen("log.out", "a"); 
       int i, j, hit = 0; 
       int exist, k = 0;                 // k = index to Nbr table 
       float power[8] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0};    // 8 ping ranges 
       float ping_rng = power[pwr_lvl-1]; 
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       int node_idx = m, broadcast_ping = 0, route_node; 
        
       if (node_idx == ping_node_idx) broadcast_ping = 1;            // Master Node Ping 
       else { 
            while (node_idx != ping_node_idx){                       // forward the ping command 
                  route_node = Node[node_idx].rt[cell_idx];                                    
                  node_idx = route_node - 20;                        // index of route node 
                  if (node_idx == cell_idx){  
                     node_idx = ping_node_idx;                       // Cellular addressing 
                     broadcast_ping = 1; 
                     } 
                  } 
            } 
 
       /* Broadcast Ping */ 
       float P_rand; 
        
       if (broadcast_ping == 1){ 
                                               
       for (i=0; i<N; i++){ 
           if (i!=node_idx){ 
           P_rand = (float)rand()/RAND_MAX;   // generate random echo return probability at each node 
           if (g_rng[node_idx][i] <= ping_rng){            
           if (P_rand >= P_echo_fail){        // proceed with echo in response to broadcast ping 
              for (j=0; j<N; j++){            // check if node i exists in Nbr table 
                  if (Node[node_idx].mynbr[j].address == g_posn[i].address){ 
                     exist = 1; 
                     Node[node_idx].mynbr[j].range = g_rng[node_idx][i];    // retain the latest range 
                     break; 
                     }  
                  else exist = 0; 
                  } 
              if (exist == 0){                // node i is a new node 
                 for (j=0; j<N; j++){ 
                     if (Node[node_idx].mynbr[j].address == 0){ 
                        k = j; 
                        break; 
                        } 
                     } 
                 Node[node_idx].mynbr[k].range = g_rng[node_idx][i]; 
                 Node[node_idx].mynbr[k].address = Node[i].myaddress; 
               
                 fprintf(out0,"Pwr lvl %d\t Node %d\t discovered Node %d\t at Range = %f\n", 
                         pwr_lvl, Node[node_idx].myaddress, Node[node_idx].mynbr[k].address,  
                         Node[node_idx].mynbr[k].range); 
                 }  // end of if 
              hit = hit + 1;                  // no. of neighbours found 
              }   // end of if              
              } 
           } 
           }   // end of for 
       return(hit);                           // return no. of neighbours discovered 
       }    // end of if 
       } 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
 
/* Transfer neighbour data from Ping node to Master node to be stored in M_NT function definition */ 
void transfer (int m, int fr, int to, int cell_idx){ 
       int i, j, k; 
       struct Nbr_table temp_NT[N]; 
       int idx, route_node, nodes_found, exist; 
      
       if (fr == m){ 
          printf("%d ", Node[fr].myaddress); 
          temp_NT[to] = Node[m];         // at Master node 
          } 
       else { 
            idx = fr; 
            temp_NT[fr] = Node[fr]; 
            printf("%d ", Node[fr].myaddress); 
            idx = cell_idx; 
            temp_NT[idx] = temp_NT[fr]; 
            fr = idx; 
            while (idx != to){ 
            printf("%d ", Node[fr].myaddress); 
                  route_node = Node[idx].rt[to];           // reverse path transfer 
                  idx = route_node - 20; 
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                  temp_NT[idx] = temp_NT[fr]; 
                  fr = idx; 
                  } 
            if (idx == to) temp_NT[to] = temp_NT[idx];     // at Master node 
            } 
       printf("%d\n", Node[to].myaddress); 
  
        
       for (i=0; i<N; i++){ 
           if (temp_NT[to].mynbr[i].address == 0){ 
              nodes_found = i;              // determine no. of nodes found by ping node 
              break; 
              } 
           } 
       for (i=0; i<N; i++){ 
           if (M_NT_row[i].address == temp_NT[to].myaddress){ 
              k = i;                        // row index in M_NT corresponding to ping node 
              break; 
              } 
           } 
       for (i=0; i<nodes_found; i++){ 
           for (j=0; j<N; j++){             // check if node i exists in M_NT_row[k] 
               if (M_NT_row[k].nbr_node[j].address == temp_NT[to].mynbr[i].address){ 
                  exist = 1; 
                  M_NT_row[k].nbr_node[j].range2 = temp_NT[to].mynbr[i].range; 
                  break; 
                  } 
               else exist = 0; 
               } 
           if (exist == 0){                 // node i is a new node in M_NT_row[k] 
              for (j=0; j<N; j++){ 
                  if (M_NT_row[k].nbr_node[j].address == 0)    // find empty row 
                     break; 
                  } 
              M_NT_row[k].nbr_node[j].address = temp_NT[to].mynbr[i].address; 
              M_NT_row[k].nbr_node[j].range1 = temp_NT[to].mynbr[i].range; 
              } 
           }   
       } 
        
////////////////////////////////////////////////////////////////////////////////////////////////        
 
/* Master node aggregates data and expand M_NT function definition */ 
int aggregate (int m, int ping_node_idx){ 
       int i, j, k, exist, nodes_found, new_nodes = 0; 
       float range, range1, range2; 
                     
       for (i=0; i<N; i++){ 
           if (M_NT_row[i].address == Node[ping_node_idx].myaddress){ 
              k = i;               // row index k in M_NT corresponding to ping node 
              break; 
              } 
           } 
       for (i=0; i<N; i++){ 
           if (M_NT_row[k].nbr_node[i].address == 0){ 
              nodes_found = i;     // determines no. of nodes found by ping node 
              break; 
              } 
           } 
        
       for (i=0; i<nodes_found; i++){        // Master node aggregates ranges & checks for new node 
           range1 = M_NT_row[k].nbr_node[i].range1; 
           range2 = M_NT_row[k].nbr_node[i].range2; 
           if (range1 != 0 && range2 == 0) range = range1;       // rules to filter 2 ranges 
           if (range1 == 0 && range2 != 0) range = range2; 
           if (range1 != 0 && range2 != 0) range = (range1 + range2) * 0.5; 
           M_NT_row[k].nbr_node[i].filtered_range = range; 
           } 
 
       struct m_nbr Temp;            
       for (i=0; i<nodes_found; i++){         // Bubble Sort according to range 
           for (j=0; j<nodes_found-i-1; j++){ 
               if (M_NT_row[k].nbr_node[j].filtered_range > M_NT_row[k].nbr_node[j+1].filtered_range){ 
                  Temp = M_NT_row[k].nbr_node[j]; 
                  M_NT_row[k].nbr_node[j] = M_NT_row[k].nbr_node[j+1]; 
                  M_NT_row[k].nbr_node[j+1] = Temp; 
                  } 
               } 
           }  
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       for (i=0; i<nodes_found; i++){         
           for (j=0; j<N; j++){ 
               if (M_NT_row[k].nbr_node[i].address == M_NT_row[j].address){ 
                  exist = 1; 
                  break; 
                  } 
               else exist = 0; 
               } 
           if (exist == 0){            // M_NT_row[k].nbr_node[i] is a new node 
                                       // apply cutoff range to determine immediate nbrs 
              if (M_NT_row[k].nbr_node[i].filtered_range <= cutoff_rng){      
                 for (j=0; j<N; j++){ 
                     if (M_NT_row[j].address == 0)     // find empty row in M_NT 
                        break; 
                     } 
                 M_NT_row[j].address = M_NT_row[k].nbr_node[i].address;  // expand M_NT 
                 new_nodes++; 
                  
                 M_Routing_table[M_NT_row[j].address-20][m]=Node[ping_node_idx].myaddress; 
                 } 
              } 
           } 
       return(new_nodes); 
       } 
               
////////////////////////////////////////////////////////////////////////////////////////////////// 
 
/* Master node determines route to Ping Node (node_idx) function definition */ 
void determine_route (int m, int node_idx, int ping_ptr){ 
       int i, j, k=ping_ptr, exist; 
       FILE *out5; 
       out5=fopen("graph.out","a"); 
 
       M_Routing_table[node_idx][node_idx] = Node[node_idx].myaddress; 
        
       if (node_idx == m){         // initialise M_NT for Master node 
          M_NT_row[0].address = Node[m].myaddress; 
          Node[m].found_by = Node[m].myaddress; 
 
          fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,  
                 Node[node_idx].myaddress, Node[node_idx].found_by); 
 
          return; 
          }        
               
       if (M_Routing_table[m][node_idx] != 0)   // check if route exist 
          exist = 1; 
       else exist = 0;        
 
       int idx, route_node, low_route_node, r, s, found, found_route_node=0; 
       float route_value, low_route_value=10000; 
 
       if (exist == 0){ 
          for (i=0; i<k; i++){ 
              found = 0; 
              for (j=0; j<N; j++){ 
                  if (M_NT_row[i].nbr_node[j].address == 0) break; 
                  if (M_NT_row[i].nbr_node[j].address == Node[node_idx].myaddress){ 
                     if (M_NT_row[i].nbr_node[j].filtered_range <= cutoff_rng){ 
                        found = 1; 
                        idx = M_NT_row[i].address - 20; 
 
                        float metr; 
                        if (idx == m) metr = handicap_val*metric;    // handicap master node 
                        else metr = metric; 
 
                        route_value = C1*pow(((M_NT_row[i].nbr_node[j].filtered_range - metr)/metr), 
E1) + C2*M_NT_row[i].nbr_node[j].filtered_range/metr; 
                         
                        while (idx != m){ 
                                 route_node = M_Routing_table[idx][m]; 
                                 for (r=0; r<N; r++){ 
                                     if (M_NT_row[r].address == route_node) 
                                        break;        // row index r in M_NT of route_node 
                                     } 
                                 for (s=0; s<N; s++){ 
                                     if (M_NT_row[r].nbr_node[s].address == Node[idx].myaddress) 
                                        break;        // nbr index s in M_NT_row[r] of idx 
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                                     } 
                          
                              idx = route_node - 20; 
                               
                              if (idx == m) metr = handicap_val*metric;    // handicap master node 
                              else metr = metric; 
                               
                              route_value += C1*pow(((M_NT_row[r].nbr_node[s].filtered_range - 
metr)/metr), E1) + C2*M_NT_row[r].nbr_node[s].filtered_range/metr; 
 
                              }    // end while 
                        } 
                     break; 
                     } 
                  }  // end for 
 
              if (found == 1){ 
                 if (route_value < low_route_value){    // select lowest cost route 
                    low_route_value = route_value; 
                    low_route_node = M_NT_row[i].address; 
                    min_route_cost[node_idx] = low_route_value; 
                    } 
                 } 
               
              }   // end for 
           
          Node[node_idx].found_by = low_route_node; 
          M_Routing_table[node_idx][low_route_node-20] = low_route_node;           
           
          fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,  
                  Node[node_idx].myaddress, Node[node_idx].found_by); 
           
          int idx1=low_route_node-20, idx2=node_idx; 
           
          while (idx2 != m){          // update M_Routing_table 
                M_Routing_table[idx2][m] = Node[idx1].myaddress; 
                M_Routing_table[idx1][node_idx] = Node[idx2].myaddress; 
                idx2 = idx1; 
                idx1 = Node[idx1].found_by - 20; 
                }    // end while 
          }    // end if (exist == 0) 
       } 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////
////// 
 
/* Master distribute route to Ping Node (update local routing table) function definition */ 
void distribute_route (int m, int node_idx){ 
       int j, idx1=m, idx2; 
 
       if (node_idx == m){ 
          for (j=0; j<N; j++) 
              Node[m].rt[j] = M_Routing_table[m][j]; 
          return; 
          } 
        
       while (idx1 != node_idx){ 
             idx2 = M_Routing_table[idx1][node_idx] - 20;             
             for (j=0; j<N; j++){ 
                 Node[idx1].rt[j] = M_Routing_table[idx1][j]; 
                 Node[idx2].rt[j] = M_Routing_table[idx2][j]; 
                 } 
             idx1 = idx2;              
             } 
       } 
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